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New forms of Lifson�Roig algorithms are introduced for modeling stabilities of helices formed by
polypeptides derived from �-amino acids. The principles of constructing and generalizing these algorithms are
developed, and their application to modeling of circular dichroism ellipticities and protection factors derived
from H/D exchange of �-peptide backbone amide residues are critically reviewed. With the aim of comparing
the properties of structured conformations formed by �- and �-peptides, the intrinsic limitations ofLifson�Roig
algorithms and their underlying assumptions are analyzed. Lifson�Roig state sums that provide easy structural
analysis are generated by new algorithms based on products of 8� 8 and 16� 16 matrices, and a simple protocol
is introduced for generating new state sums that are tailored for specific purposes. The N- and C-capping of
highly helical �-peptides by means of tailored helix-stabilizing templates is shown to result in helical
conformational manifolds that approach those of helical �-peptides in conformational homogeneity.

1. Introduction. ± In polar solvents, an unaggregated, helically-disposed polypeptide
derived from �-amino acids must be modeled as an equilibrated manifold of fully
helical, partially helical, and nonhelical conformations. As recently shown primarily by
Seebach and co-workers [1], the conformations of helical analogs formed by �-amino
acids are fully structured and highly stable. This contrast is particularly surprising in
that in both cases the manifolds of unstructured conformations that serve as energetic
references are believed to be strongly stabilized by entropic effects, and the
stabilization of structured conformations is attributable to familiar, presumably well-
understood enthalpic effects associated with H-bonding and hydrophobic interactions.
This is a humbling result for those who profess a chemical understanding of the causes
of the energetic properties of �-peptides. Clearly, these causes must be rethought.

As a modest step toward that goal, this report examines the underlying assumptions
and generalizes the form of the Lifson�Roig (LR) bookkeeping models [2] currently
used to assign stabilities from experimental data to helices formed by �-peptides. Why
are bookkeeping models important for this class of molecules? The three cases shown
in Fig. 1 address this question by comparing basic features of conformational analysis
that are employed under equilibrium conditions for simple organic molecules as well as
for complex biopolymers.

Conformational modeling of a simple molecule studied under particular exper-
imental conditions begins with a list generated by analogy or from prior experiment of
the energetically accessible conformations. Spectroscopic data are then analyzed to
yield mole fractions of the relevant conformational states. For the axial and equatorial
methylcyclohexane of Fig. 1,a, the bookkeeping model is trivial, since only two states
are present.
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A cyclohexane bearing a long straight- or branched-chain alkyl substituent is slightly
less trivial. When spectroscopic data primarily reflect the axial/equatorial equilibrium
of the cyclohexane moiety and are relatively insensitive to the presence of gauche and
anti conformations of the alkyl function, then, for bookkeeping purposes, the
conformations of the alkyl chains can be grouped as substates of axial and equatorial
conformational manifolds. At least to a first approximation, the energetic distributions
of the alkyl substates within these manifolds can be taken as identical, the alkyl chain
can be treated as though it were a rigid substituent, and the axial/equatorial equilibrium
of the alkylcyclohexane can be modeled conceptually as a two-state process, like that of
methylcyclohexane. A bookkeeping model that accounts for conformational variability
of the alkyl chain would clearly be more complex.

Reversible denaturation of a cooperatively-stabilized globular protein can occur
completely over a small range of denaturant concentrations or temperatures,
generating an exceptionally diverse manifold of unstructured conformations (Fig. 1,b)
[3]. A two-state bookkeeping model is often applied to such denaturation equilibria;

Fig. 1. Relative energetics of conformations of molecules and their conformational manifolds. a) A simple
example of an equilibrium between two well-defined conformations of the same molecule. b) Equilibrium for
the unfolding of a globular protein. Although a native protein (right) can often be modeled as a single
conformation to a good approximation, the unstructured state (left) is a conformational manifold containing
many disordered conformations. Owing to its conformational homogeneity, denaturation of a globular protein
can often be modeled as a two-state process described by a simple equilibrium expression. c) The unfolding of a
typical unaggregated �-peptide in a polar protic solvent. Both structured and unstructured states must be

modeled as conformational manifolds.
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the native protein structure is approximated as a single conformation, and the non-
native conformations are grouped together as members of the unstructured manifold.
The quantitative spectroscopic methods often used to characterize denaturation are
primarily responsive to the unique structural features of the native state and relatively
insensitive to subtle changes within the unstructured manifold; this spectroscopic
feature contributes to the predictive success of a two-state model [4].

Models devised for random coil linear polymers in solution provide an alternative
for describing the properties of the unstructured manifold [5]. The interaction of the
polymer chain with itself and with solvent molecules are important variables in these
models, which have been very successful in describing experimental properties of both
homo- and heteropolymers in which the polarities of the monomer side chains are
similar. They are much less successful, though, when applied to heteropolymers like
biopeptides for which these side chains differ in charge and polarity [6].

These three examples contrast strongly with conformational equilibria between
unstructured states and helices formed by unaggregated helical �-peptides in aqueous
solution. As shown in Fig. 1,c, helical conformations of varying length but similar
stability are formed, and the collective helical state, like the unstructured state, must be
treated as a conformational manifold. Although assumption-dependent computational
models can do so, no measurement allows experimental assignment of a mole fraction
to each of these conformations. In the place of mole fractions, quantitative helicity
assays for helical �-peptides rely upon averaged differences in the environments of
helical and nonhelical �-C-atoms. The bookkeeping model is focused on fractional
helicity, which is the fraction of potentially helical �-C-atoms within the peptide that is
helical under particular experimental conditions. If mole fractions �i of all helical
conformations of varying lengths i (on a residue basis) were defined for a peptide of
overall length n, fractional helicity (FH) can be expressed as the sum of all terms
(i/n)�i. Any measured helical property clearly is an abundance-weighted statistical
average over the conformations within the helical manifold. If this property depends on
helix length i or on other context effects, the measured property lacks a simple
structural interpretation.

Are the available physical methods for quantitating helicity sufficient to character-
ize these complex systems at a chemical level? There are grounds for cautious optimism
if all available methods are applied to �-homopeptides of variable length. Such studies
should resolve current paradoxes and achieve a deeper level of rigor than currently
available. At the very least, one should be able to predict amino acid sequences for
exceptionally stable helical �-peptides with properties that approach those expected
for the two-state model of Fig. 1,b.

The complex character of the bookkeeping model required for quantitative
modeling of a typical helical �-peptide in solution distinguishes the case of Fig. 1,c
from conformational analysis familiar to the physical organic chemist. The Lif-
son�Roig (LR) algorithm was introduced more than 40 years ago to describe pH-,
length-, and temperature-dependent helix/coil equilibria of high-molecular-weight
polylysines and polyglutamates. With relatively minor changes, it has become the
standard algorithm for modeling the properties of helical �-peptides in the size range of
10 ± 50 residues. For a helical �-peptide of length n, the LR algorithm generates a state
sum containing 2n terms from which all other properties that can be correlated with
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experiment are calculated. This complex state sum is rarely written or analyzed
explicitly. As a result, for the nonspecialist, LR predictions often acquire a −Delphic×
status that impedes critical analysis. Clarification of the conformational differences
between �- and �-peptides is likely to require a rigorous, incisive, quantitative comparison
of the energetics of the conformations that make up their respective unordered and struc-
tured states. A first step is a demystification of the LR bookkeeping tool itself. Although
the biophysicist and the structural biologist likewise address the conformational
analysis of biopolymers, they usually do not share the preference of the physical organic
chemist for a rigorous, molecularly-based understanding that is rooted, at least initially,
in a thorough heuristic analysis of the simplest pertinent systems. This report attempts
to frame the helicity problem from this perspective and emphasizes results and implica-
tions ofmodeling of simple helical �-homopeptides that are now experimentally accessible.

The helicity of �-peptides covers an extensive literature, primarily derived from the
study of charged homo- and heteropeptide sequences [7]. The recent literature
demonstrates impressive advances in predictive correlations of �-peptide helicity data
with sequence and structure [8]. The narrow focus of this review is not intended to
minimize the importance of either these results or recent refinements or alternatives to
the classical L/R algorithms [9] [10]. Its primary aim is a recasting of the usual exterior
features of a L/R algorithm in forms that more readily reveal to the nonspecialist its
underlying assumptions, its potential for generalization, and its intrinsic limitations. In
the past, the conformational problems posed by biopolymers have been profitably
addressed by an exceptionally eclectic group of bioscientists. The challenge posed by
the striking energetic differences between conformations of �- and �-peptides may
signal that the time is ripe for new contributions.

2. The Classical 4� 4 Lifson�Roig Matrix Algorithm. ± For an �-peptide with n
residues that terminates in amide functions at each of its ends, a LR state sum
combines, singles out, and weights 2n of its conformations in the following way. Only
conformations that result from changes in the n pairs of �-peptide backbone dihedral
angles are considered. Side chain conformations are ignored. If the � and/or � dihedral
angles at each of the backbone �-C-atoms both lie within the helical limits of the
Ramachandran diagram, the site conformation is assigned as h (for helical); if either �
or � lie(s) outside helical limits, the site conformation is assigned as c (for coiled). The
conformation for the peptide sequence is assumed to be defined by the set of site
assignments and is labeled by a sequence of h,c symbols, one for each of the n �-sites.
Weighting rules are then used to translate each label into an energetic weight for that
conformation, and the sum of weights for each of the 2n conformations defines the state
sum. For example, for the conformation hhhccc of a hexapeptide, � and � of the first
three �-C-atoms lie in the helical region, and those of the second three �-C-atoms lie in
nonhelical regions. Since the backbone amide functions are planar, assigning � and �
helical values restricts the geometry of the first three residues substantially, but the
second three may sample many different � and � angles. Because the focus of the
algorithm is helicity, these diverse c state conformations are grouped and assigned a
collective nonhelical weight. The presence or absence of amide-forming end caps is a
small but significant point. The two terminal residues of a simple �-peptide sequence of
length n define its caps, and, for LRmodeling, therefore, the peptide has at most (n� 2)
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helical �-C-atoms, and 2(n�2) conformations and conformational labels. If the sequence
is terminated by amide-forming caps like Ac and NH2, then the corresponding
numbers1) are n and 2n, respectively.

For an �-homopeptide, Eqn. 1 defines the conventional LR state sum for a
homopeptide of length n, which is a product of two end vectors and a series of n
identical matrices. Each matrix i in the ordered matrix product assigns the site weight of
the amino acid residue at site i in the conformational label. For the label hhchcc, the
fourth matrix of the product assigns a weight to the site conformation h that
characterizes the fourth peptide residue. The state sum is a polynomial in two free
variables, the so-called helix-initiation constant v and the helical propensity w.
Although w is defined as dependent on both temperature and type of amino acid
residue, v is usually taken to be independent of both.

Why has a matrix product been used in this calculation, what are the helical
weighting rules, and how does Eqn. 1 implement these rules? These questions are best
addressed by considering a directly related but conceptually simpler assignment
process. A comparison of the vector-matrix product of Eqn. 1 with the second vector-
matrix expression in the series of equalities of Eqn. 2 shows that the matrix of the
former results from a single substitution of a new coefficient w for the v coefficient at
the first row and column of the corresponding matrix of Eqn. 2.

The polynomials calculated by this simpler vector-matrix expression of Eqn. 2 are
familiar binomial series in 1 and v. For a capped �-pentapeptide, this series is (1� v)5�
1� 5v� 10v2� 10v3� 5v4� v5, a state sum that assigns weights to each of the 25� 32
conformations. In this sum, the single conformation labeled ccccc is weighted 1; the five
conformations containing a single h and four c are each weighted 14v ; the ten
conformations containing two h and three c residues are each weighted 13v2, and the
single hhhhh conformation is weighted v5, etc. This is the simplest of all models for the
conformational energetics of a polymer that contains n flexible, identical, noninteract-
ing subunits, and any of the three equivalent algorithms of Eqn. 2 calculates its state
sum. The model is based on the assumption that the energetic contribution of each
conformation can be written as a product of n independent site conformational weights,
1 or v, at each of its �-C-atoms.
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Although modeling calculations of the �,�-dependent energies of �-peptide
conformations show that the total area of energetically accessible space at normal
temperatures is strongly dependent on the bulk of the side chain linked to the �-C-atom
[11], an average value can be assigned to a typical �-amino acid side chain. From this,
the parameter v can be estimated as a ratio of areas of accessible helical versus
nonhelical �,� space, in approximate agreement with v� 0.05, assigned from LR
modeling [12]. Accepting this value, one can estimate the mole fraction of the ccccc
conformation within the overall peptide manifold as 1/(1� v)5� 0.78, that of each of
the five conformations containing a single h residue as v/(1� v)5� 0.04, and that of the
single hhhhh conformations as v5/(1� v)5� 2� 10�7. With this simple model, helical
conformations are assigned very small weights, contrary to experiment2).

Clearly, a helix-stabilizing effect is missing from this model. Unlike the binomial
expansion, an algorithm capable of distinguishing helical from nonhelical regions must
identify clusters of adjacent h residues and weight them differently from isolated or
paired h residues. In the simple LR model, this weighting is achieved by assigning
different weights to h,c triads that appear within the sequence of the conformational
label. Thus, the label chchhhcch contains an hhh triad that signals the presence of a
short helical region, but the label hhchcchch does not.

To generate a list of triads that can be used in this weighting process, a pair of
additional c-site weights are added at each end of the conformational label to signifyN-
and C-capping. This new sequence is used to construct an ordered series of overlapping
h,c triads, as shown in Eqn. 3 for an �-octapeptide conformation of the type cchhhchc.
The underlined center h,c symbol of the ith triad in this sequence corresponds to the ith
site h,c conformation that must be weighted by the ith matrix in the product of Eqn. 1.
Because triad sequences overlap, the center symbol of any triad is identical with both
the third symbol of its predecessor and the first symbol of its successor. Thus, the first
symbol of any triad corresponds to the (i� 1)th site conformation, and the third symbol
to the (i� 1)th site conformation. As a result, in order to weight h-site conformers in
helical conformations more strongly than an isolated h-site conformer corresponding to
the triad chc, or the paired h-site conformers of the triads hhc and chh, the h-site
conformer of the triad hhh must be assigned a new weight w that is greater than the
weight v used in the binomial model.
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Each of the eight triads of Eqn. 3 corresponds to one of the eight nonzero
coefficients of the 4� 4 LRmatrix ofEqn. 1. To clarify this bookkeeping feature,Lifson
and Roig introduced the row and column identifiers of Eqn. 4. The two h,c symbols of
each row identifier correspond to the first two of a triad, and the symbol of each column
identifier corresponds to the third symbol of a triad. Thus, one can group the eight
triads with the corresponding row/column identifiers (i,j) and their site weights w as
follows: hhh: (1,1), w; hhc: (1,2), v ; hch: (2,3), 1; hcc: (2,4), 1; chh: (3,1), v ; chc: (3,2),
v ; cch: (4,3), 1; and ccc: (4,4), 1. In Eqn. 5, the triad sequence of Eqn. 3 is repeated,
with corresponding (i,j) terms and weights listed underneath each triad, defining two
new series, each with a computational significance. The product of the eight (i,j) terms
weights the conformation labeled cchhhchc as v3w, equivalent to the state-sum term
generated by a corresponding path traced through the matrix product.

Important regularities appear in the above example. The overlapping feature of the
triad sequences reflects the form (i,j)(j,k)(k,l) of the matrix row/column identifiers,
which, in turn, is defined by the conventions of matrix multiplication. In simple LR
algorithms, a numerical weight of 1.0 is assigned to all c-site conformations, and, from
Eqn. 4, these appear in even-numbered matrix rows, and, thus, for their (j,k) identifiers,
j is even. The h-site conformations are assigned weights of either v orw, which appear in
odd-numbered matrix rows. If one starts with the conformational label and constructs
the product of (j,k) identifiers that corresponds to a particular conformation in a
stepwise process, working from left to right, then, when a triad sequence ends in h, the k
coefficient of the appropriate (j,k) pair must be odd; when the sequence ends in c, then
k of the appropriate ( j,k) must be even. Given the list of nonzero (i,j) coefficients and
the conformational label, one can calculate the overall LR weighting without matrix
multiplication, as shown by a second example below.

This process starts with selection of a nonzero coefficient from the first vector of
Eqn. 1. For the �-pentapeptide sequence hhhch, the first residue to be weighted has
an h-site conformation, so the odd-numbered coefficient (3) from this vector is
selected, which must match the j for the first (j,k) coefficient. Since the first triad
is chh, k for this coefficient is odd, and the choice is (3,1). The incomplete coeffi-
cient product is (3)(3,1)(1,k), but since the second triad is hhh, the incomplete
coefficient must be (1,1). Continuing this analysis generates the full (j,k) sequence
(3)(3,1)(1,1)(1,2)(2,3)(3,2)(2), which assigns a weight v3w to the conformation hhhch.
This weighting path can be traced through the explicit vector-matrix product of Eqn. 6 ;
the nonzero matrix coefficients that contribute to the weighting are highlighted in red.
The weighting of a particular h,c sequence by the algorithm of Eqn. 1 can be regarded
as the vector-matrix product that results when only the red nonzero coefficient is
retained and all others are set equal to zero. The complete state sum is generated by the
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algorithm ofEqn. 6 and corresponds to all nonzero paths that can be traced through the
matrix product.

The LR algorithm of Eqn. 1 implements the following series of model assumptions.
It retains the 2n conformations of Eqn. 2, as well as the implicit assumptions that
molecular conformations do not perturb each other and, thus, can be weighted
independently, and that the weights of nonhelical regions depend only on the h,c
dispositions of individual �-C-atoms. As with Eqn. 2, single or paired h terms spaced in
the h,c sequence by intervening c terms are assigned v weights. Thus, in the LR model,
the weight v4 is assigned to each of the �-octapeptide h,c conformational labels
chchchch, chhcchhc, and hhchchcc. As noted above, Eqn. 1 weights clusters of three or
more h residues differently, thus, defining the complete three-residue helical turn, with
its single intramolecular H-bond, as the simplest helical conformation.

Three rules for weighting residues in helical clusters are used. First, within a helical
cluster, the first and last residues are assigned v weights. Second, a w weight is assigned
to each interior h residue in each cluster; thus the weights of the sequences chhhc,
chhhhhc, hhhhhh, hhhhhhhhh, and chchchhhhh are, respectively, v2w, v2w3, v2w4, v2w7,
and v4w3. The helical propensity w reflects the enthalpic stabilization resulting from
amide/amide H-bonding and hydrophobic effects that result from formation of a helical
loop; w can be defined as the tendency of an amino acid linked to a preexisting helix to
join and lengthen it by one residue. A propensity of w� 1 then corresponds to a residue
that is indifferent to helix propagation. This second rule implements the simplest of the
possible helix stability assumption, i.e., the free energy of a helical region is a linear
function of the length of its h cluster. Third, two regions containing consecutive h
sequences separated by one or more c residues are treated as independent helices. Thus,
the sequence hhhhhhc with one independent h sequence is assigned a weight v2w4, but
the sequence hhhchhh is assigned the much smaller weight v4w2.

After his proposal of the original LR algorithm, Lifson questioned the severity of
this third rule [13]. Its structural penalty implies that interruption of helical structures
at a central position by a single nonhelical � or� backbone angle is sufficient to destroy
its propagating capacity at that site. An experimental measurement of the energetic
cost of these broken sequences has proved difficult, and despite Lifson×s concern, the
original broken sequence weighting is almost universally used today.

The two-state helix/nonhelix assumption of the model is embodied in the two
nonzero coefficients that appear in rows or columns of both matrix and vectors.
Numbered rows and columns can be assigned odd or even parities, and these are tied,
respectively, to the h,c symbols that identify the conformation at each �-C-atom. The
nonzero coefficients that appear in the odd-numbered first and third matrix rows assign
to h identifiers either v or w weights, and the even-numbered nonzero coefficients in
second and fourth rows assign to c identifiers unity weights. The row/column rules of
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matrix multiplication ensure that, if nonzero coefficients are present in the first or third
columns of a given matrix, its following matrix must assign v or w weights to the next
residue in the peptide conformation. Correspondingly, nonzero coefficients in the
second or fourth columns direct assignment of 1.0 weights by the following matrix.

In the next section, the triad sequences and their corresponding ( j,k) matrix
coefficients are used to tailor the nonzero coefficients of the matrices used in LR
calculations to particular lists of conformation weights. The LR algorithm then
becomes a plastic tool for defining and implementing new weighting schemes for the
conformational manifolds of helical peptides.

The analysis of Eqns. 5 and 6 shows that matrices and matrix multiplication that
define the usual calculation of LR state sums are formalisms that ensure easy
implementation of the multiplication of n ( j,k) coefficients drawn from a list of eight.
However, typical PC software is exceptionally efficient at carrying out matrix
multiplication and is particularly suited for maximizing multiplication speed for
matrices that contain high percentages of zero coefficients. Calculation of a state sum
for an �-peptide containing 80 amino acids involves calculation and summation of more
than 1024 terms, yet, a PC executes this numerical evaluation in less than seconds, and
even a symbolic calculation of this state sum as a function of undefined w is complete in
minutes. When first devised, the LR algorithm was primarily applied to linear
oligopeptides containing hundreds of amino acids. In this −pre-computer× age, complex
matrix methods were used to render the LR algorithm tractable. At that time, the
smallest matrix dimensions consistent with the modeling necessities were computa-
tional essentials. In the PC age, generalizations of the original 4� 4 and 3� 3 matrices
of Lifson and Roig to matrices of much larger dimensions have many advantages.

3. The 8� 8 Lifson�Roig Matrix: Calculations of Length- and w-Dependent
Fractional Helicities for �-Homopeptides. ± The algorithm of Eqn. 1 yields the state
sum ss(5) for an �-homopentapeptide, written explicitly in Eqn. 7. The following
features can be identified. The state sum is a polynomial in variables v and w that
contains a pure polynomial in v. This corresponds to the weight of conformations that
include no helical regions. Because typical values for v lie close to 0.05, the first three
terms of this polynomial provide a good approximation to this weight, and these terms
are shared with the v polynomial of Eqn. 2.

The state sum terms in the remainder of the polynomial can be associated by
inspection with h,c conformational labels. The last term, v2w3, weights the single
completely-helical sequence hhhhh; the term 2v2w2 corresponds to the two conforma-
tions chhhh and hhhhc, and the term 3v2w represent cchhh, chhhc, and hhhcc. Two of
these labels begin or end in cc sequences; they can be paired with labels hchhh and
hhhch, which result from single h,c replacements that do not increase the length of the
helical region. They correspond to the remaining w-weighted term 2v3w in Eqn. 7. All
state sums derived from Eqn. 1 share these features, and all but one term in Eqn. 7 can
be translated unambiguously into one or more sequence labels. The exception belongs
to a type that appears in all state sums for peptides containing seven or more residues.
The term 3v4w2 weights two distinct sequence types: (hhhhchh�hhchhhh) and
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hhhchhh. These correspond to a four-residue helical sequence separated from a pair of
h residues and to two three-residue helical sequences, respectively. From the weight
alone, it is impossible to identify the ratio of sequence types that occur in the
conformational manifold. This ambiguity results from the use of the same v symbol for
two distinct types of site conformations, nonhelical single or paired h-weighted �-C-
atoms and the pair of h-weighted �-C-atoms at the ends of helical sequences. This dual
role for v is an intrinsic feature of LR algorithms based on 4� 4 matrices, as can be
easily demonstrated by assuming that the w,v assignments for coefficients of the odd-
numbered rows of the LRmatrix of Eqn. 1 have not been made. We can assign them by
examining short conformational labels for which assignments are obvious and follow
the weighting rules listed in the above section. The appropriate (j,k) products for the
tetrapeptide sequences hhcc, hhhc, and hhhh appear in Eqns. 8 ± 10.

The respective state weights from the helix-weighting rules for each of these
conformations are: hhcc, v2; hhhc, v2w; and hhhh, v2w2. We can assign values consistent
with these state weights to the coefficients (1,1), (1,2), and (3,2) by noting that all
vector coefficients and those (j,k) coefficients with even i or j values possess a weight of
1.0. It follows from Eqn. 8 that (3,1)(1,2)� v2 ; from Eqns. 9 and 10 (3,1)(1,1)(1,2)� v2w
and (3,1)(1,1)(1,1)(1,2)� v2w2, implying that (1,1)�w� v2w2/(v2w) and that the
product (3,1)(1,2) must be assigned a value v2 when it appears in a weighting sequence
for either isolated hh pairs or for the first and last residues of a helical sequence. This is
the reason for the ambiguous interpretation of the coefficient 3v4w2 in Eqn. 7.

A more-general LR algorithm can be constructed that assigns different parameters
to the weighting of isolated or paired h-site conformations or h terms that appear at the
beginning or end of helical sequences. The triad labels associated with a 4� 4 matrix are
intrinsic to the problem, since the label hhc can correspond to a matrix weight for the
second of a pair of adjacent h-site conformations that are not part of a helix, or it can
correspond to the second residue of a helix. To differentiate these two distinct
weighting roles, tetrad sequences constructed like the triad sequences from the
conformational label are needed. The conformation cc � chhhchh � c thus yields such a
tetrad sequence (Eqn. 11). A weighting of an h-site conformation that terminates a
helical sequence corresponds to the tetrad hhhc, which is now distinguished from the
tetrad chhc, which corresponds to a nonhelical pair of adjacent h-site conformations.

The 2� 2 and 4� 4 matrix products of Eqn. 2 can be generalized to products of
matrices with 2k columns and rows. These newmatrix products have the feature that the
triad sequences that correspond to the weighting sequences of 4� 4 matrices become
(k� 1)meric. To implement tetrad sequences, a LR algorithm based on 8� 8 matrix
products is, thus, required. The transformation of nonzero elements shown in Eqn. 12
demonstrates how the 4� 4 LR matrix can be converted into a fully equivalent 8� 8
LR matrix. To obtain the same state function as in Eqn. 1, but using the 8� 8 matrix of
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Eqn. 12, the required vectors v1 and v2 are [0,0,0,0,0,0,1,1] and [0,1,0,1,0,1,0,1].
Although the 8� 8 matrix quadruples the total number of coefficients found in the 4�
4 matrix, it only doubles the number of nonzero coefficients. The computational time
on a desktop PC, therefore, remains convenient.

New row/column identifiers can be added to the matrix of Eqn. 12, as shown in
matrix a of Eqn. 13. The three h,c symbols of each row identifier correspond to the first
three of a tetrad, and the third symbol of the ith tetrad in the sequence corresponds to
the weight assigned by the ith matrix in the matrix product. Each column identifier
corresponds to the fourth symbol of the tetrad. The presence of the first symbol
distinguishes these labels from those applied to 4� 4 matrices; for the upper part of the
8� 8 matrix, these are h; for the bottom part, they are c. The tetrads hhhc and chhc to
be distinguished correspond to the matrix coefficients (1,2) and (5,2). To make this
distinction, they must be assigned different values in a LR algorithm. One must first
check whether assigning different parameters to the two distinct roles of v consistently
distinguishes between the nonhelical sequence chc and the helical sequences chhhc and
chhhhc. The required weighting assignments are as follows: w is retained for tetrads
hhhh (1,1) and chhh (5,1), and v is retained as the weight for tetrads cchc (7,3) and hchc
(3,6), but v is changed to a new weight t for the sequences hhhc (1,2), hchh (3,5), and
cchh (7,5). The former set of v corresponds to isolated h residues whose nonhelical
character is well-defined, but the latter set of t correspond either to helical h residues or
isolated, paired, nonhelical h residues. (This ambiguity must be clarified and corrected
by the chhc (5,2) assignment, as shown below.)
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One can check whether the v and t assignment consistently distinguishes between a
nonhelical sequence chc and helical sequences chhhc and chhhhc. As seen in Eqns. 14 ±
18, both cases test correctly.

The coefficient (5,2), which corresponds to the tetrad chhc, remains to be assigned,
and the simplest conformation that embodies this sequence has the label hhcc, which
generates the tetrad sequence and weighting product ofEqn. 19. The required weight is
v2, and assigning values of (7)� (8)� (2,4)� (4,8)� 1, and (7,5)� t, implies that
(5,2)� v2/t. This analysis assigns all coefficients of an 8� 8 LR matrix that embodies
three fundamental parameters v, t, and w, and when the vector-matrix product of
Eqn. 20 that contains this matrix is applied to larger homopeptides, correct state sums are
generated3).

One feature of the v, w, and t variables remains to be defined. The new parameter t
reflects the properties of the first and last residues of a helical sequence. Should it be
defined like v as independent of temperature and amino acid side chain, or should it
share the dependence on these variables that is assumed in LRmodels forw? Although
the latter option has many attractive features, a major flaw is the introduction of two
temperature- and residue-dependent parameters. A solution is provided if the variable t
of Eqn. 13 is replaced by wt, yielding the full state sum algorithm of Eqn. 20. The new
variable t in wt is assigned the temperature and residue independence of v, and the
temperature and residue dependence of w is applied to the first and last helix sites of
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3) The assignment of distinct roles to the parameters v and t is conceptually convenient and allows heuristic
modeling. At present, it is difficult to devise experiments that distinguish between these parameters, and
when data are analyzed, v is usually set equal to t.



the helical conformation. The resulting new state sum ssv,t(8) for an eight-residue �-
peptide is given in Eqn. 21.

Each term in ssv,t(8) identifies the properties of the conformations that it weights.
The exponent of t divided by two defines the number of separate helical regions within
a corresponding conformation; the exponent of w defines the overall length of its helix
or helices, and the exponent of v defines the number of isolated or paired �-C-atom h
weights. The sum of w and v exponents defines the total number of h weights within the
conformation. The total number of each type of conformation can be obtained by
summing numerical coefficients. Eqn. 21, thus, weights 149 nonhelical conformations,
21 conformations containing a single helical region and no other helical sites, and 5
conformations containing two helical conformations.

The construction of an 8� 8 matrix from a 4� 4 matrix can be generalized to form a
series of LR matrices of size 2k� 2k, where k is any positive integer, and algorithms can
be tailored using these large matrices to assign weights to conformations at the ith �-C-
atom of the sequence that depend on the h,c weights at any of the (k� 1)-preceding �-
C-atoms. In the following section, 16� 16 matrices are applied to the modeling of
peptide protection factors. In the remainder of this section, the algorithm based on the
8� 8 matrix b ofEqn. 13 is used to explore the effects of variations of v, t,w, and n on �-
peptide fractional helicity (FH) and the mole fraction of nonhelical conformations
(�Nonh) within the LR manifold.

Fundamental features of LR algorithms are reflected in the model-predicted depen-
dence of the mole fraction of nonhelical peptide conformations �Nonh and the fractional
helicity FH on peptide length n and values for w, t, and v. The FH is conveniently
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calculated as the sum over all helical lengths of FHi , i.e., the fractional helicity of helices
of length i, in turn calculated from themole fraction of these helices according toEqn. 22.

In Fig. 2, the change in length dependence of �Nonh is shown as a function of the
helical propensity w, which, for most �-amino acids, lies in the range of 0.5 to 1.6.
Values below 1.0 correspond to helix breakers, and values significantly greater than 1.0
are strong helix formers. For very short �-peptides, �Nonh invariably approaches 1.0,
implying that conformations containing helical regions are rare. For �-peptide lengths
in the range of 10 ± 15 residues, nonhelical conformations remain dominant, unless w
assumes unusually large values. The �-peptide length for which �Nonh� 0.5 is seen to
vary significantly with w, and lengths greater than 30 residues are required for w values
less than 1.1. This modeling prediction is consistent with the experimental properties of
peptide sequences. Clearly, the conformations formed by �-peptides behave differently.

Fig. 3 provides the complementary picture of the effect of changes of length and
helical propensity on FH. For any reasonable value of w, FH is predicted to be
negligible for very short �-peptide sequences, and, for w-values of 1.1 or less, to
increase modestly and nearly linearly with n. A cooperative dependence of FH on
length is seen for larger w-values, and three distinctive length regions can be identified
within each curve. In the first region, FH is close to zero, and �Nonh remains large,
implying that most molecules lack helical regions. In this length range, the collective
weight of t2wi for i� n is substantially smaller than the random coil weight of the v
polynomial of the state sum. The second region is characterized by a strong, nearly
linear dependence of FH on n, reflecting a corresponding increase in the weight of t2wi

terms; toward the upper limit of this region, �Nonh approaches zero. Nearly all molecules
now contain helical regions, and the sum of all �Hel,i terms approaches 1.0. Inspection of
the length graphs for w� 1.5 and 1.9 shows that FH for each lies significantly below 1.0,
reflecting the weights of conformations that are partially helical. Although the weight
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Fig. 2. Lifson�Roig modeling of the dependence of the mole fraction of nonhelical conformations �Nonh as a
function of peptide length n and helical propensity w (v� t� 0.048). For w� 1.1, the nonhelical conformations

dominate, even for long peptide sequences.



t2wi of the completely helical state is the largest in the helical manifold, the presence of
many partially helical conformations in this manifold lends it a strong entropic
stabilization. For this reason, the slope in the third region of the graph is modest. As n is
increased by one residue, the weight of the completely helical state is increased by w,
but more than (n� 1) new partially helical states are added to the manifold. This
length-dependent trade-off of enthalpic versus entropic stabilization of the helical
manifold ensures that, as a state average, a helical �-peptide is partially structured and
frayed at its ends.

As seen in Fig. 4, the LR model allows explicit calculation of the distribution of the
lengths of helical regions within conformations of the manifold. In Fig. 4, the relative
contribution to the overall FH of molecules containing helical regions of length i is
plotted against this length for a series of w-values. If w� 1.0, t2wi� t2, and there is no
enthalpic distinction between long or short helical regions; the dependence of FHi/FH
on i is flat (not shown). For w� 1.1 or 0.9, a small enthalpic bias is evident, but entropy
is seen to govern the distribution. Asw increases, the most frequent length i for a helical
region approaches the overall peptide length (n� 19), and the weight of very short
helical regions is very small, but the effect of entropy-based conformational averaging
is still evident, even for w� 1.9. At 25�, this w-value corresponds to a �G� of � 1.6 kJ/
mol for the addition of one new �-amino acid residue to a preexisting helix. With the
assumptions that underlie the LR model, it is clear that a significantly larger �G� per
residue is required to ensure dominance of the completely helical conformation.

The effects on FH of holding length and helix propensity constant and varying t or v
are explored in Fig. 5. The primary effect of doubling t is evident as a marked reduction
in the peptide length n at which FH assumes significant values. In effect, the curve has
been shifted to the left, owing to an increase of the magnitude of all t2wi terms. The
value of t has much less influence in region 3 of the graph, since the weight of nonhelical
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Fig. 3. Lifson�Roigmodeling of the fractional helicity as a function of peptide length n and the helical propensity
w (v� t� 0.048). For w� 1.1, FH remains modest, and little length-dependent cooperativity is evident.



conformations now dominates the state sum. The state sum itself and its portion that
weights the helical manifold are proportional to t2, which largely cancels in their ratio.
The effect of doubling v is smaller and opposes the effect of changes in twithin regions 1
and 2. Its principal effect is to selectively stabilize the nonhelical and shorter, partially
helical conformations, since v reflects the weight of nonhelical isolated and paired h-
weighted �-C-atoms.

4. Modeling of CD-based Experimental Helicity Data Using Lifson�Roig
Algorithms. ± Three complementary experimental methods for quantitatively measur-
ing helicity are particularly suited to study �-peptides in the small-to-medium-size
range. A single parameter circular dichroism (CD) assay is currently the most
convenient and widely used experimental characterization of �-peptide and protein
helicity, since it mirrors the global conformational properties of a peptide backbone.

If a peptide demonstrates a characteristic CD signature, FH is often calculated as
proportional to the experimental molar residue ellipticity at 222 nm ([�]222,Exp) [14].
Unfortunately, calibration problems currently remain unresolved and complicate
quantitative interpretations [15] of CD data. Thus, calibrations based on two
independent, NMR-based experimental methods are needed to fulfill the potential
of [�]222,Exp values as quantitative helicity monitors. These involve measurement of
peptide NH protection-factors (PF) and so-called t/c values (derived from 1H-NMR
analysis ofKemp×s helix-inducing, N-terminal template −AcHel×), which uniquely allow
helical quantitation for short �-peptides [16] based on a LR algorithm tailored for
modeling NMR data [17]. The analysis and LR modeling of PF data is described in
detail in the next section.

As previously reported, new CD calibrations are required for alanine-rich peptides
[15]. Polyalanines and alanine-rich peptides are the natural host contexts for exploring
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Fig. 4. Lifson�Roig modeling of the relative contributions of long and short helical conformations to the helical
manifold for a 19-residue peptide (v� t� 0.048). The ordinate is the fraction of total FH that is contributed by
helical conformations of lengths 3 ± 19. The length homogeneity of the manifold increases with w, but, for w� 2,

significant contributions from partial helices remain.



the relationship between helicity and amino acid composition and sequence, yet, recent
evidence demonstrates that these peptides exhibit anomalously intense values of
[�]222,Exp in H2O at low temperatures, and the available evidence suggests that values for
[�]H222,n , the limiting ellipticity expected for a completely helical peptide of length n, is
strongly temperature dependent [15].

The calibration value [�]H222,n needed to assign FH from experimental CD data is
commonly modeled as proportional to [�]H222,� , the residue ellipticity for a helical
peptide of infinite length, as seen in Eqn. 23. The constantX in this equation is a length
correction factor, and the logic of its role is clarified when [�]H222,n is converted to the
molar ellipticity of Eqn. 24. Likely values for X fall in the range of 2 ± 5, with a
frequently cited value of 2.5 [18]. A recent estimate from the globular protein data
base sets [�]H222,� equal to � 37000 deg cm2 dmol�1 [19], but, based on LR modeling of
CD data, ca. 15% larger values are typical for alanine-rich peptides [20].

Rigorous experimental validation of Eqn. 23 or the values of its coefficients has,
hitherto, been difficult, since proper peptides for calibration have been unavailable. A
definitive CD calibration of [�]H222,n requires length series of peptides of diverse types
that have been established by CD-independent criteria to approach 100% helicity
(FH� 1.0). Without such series, FH values calculated from CD data cannot be assigned
error limits and lack the quantitative rigor required for defining and testing helicity
algorithms. When the CD contributions of unstructured peptide residues are taken as
insignificant at 222 nm, and when current values for [�]H222,n are used, LR algorithms
can be applied to calculate expected values [�]222,Calc of experimental ellipticities [�]222,Exp
from Eqn. 25 in which FHi is defined as in Eqn. 224). For a large data set of [�]222,Exp
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Fig. 5. Lifson�Roig modeling of the dependence of FH on length n and the initiation parameters t and v (w�
1.3). The black curve corresponds to v� t� 0.05. For green curves, v is fixed at 0.05 and t is varied to 0.03 and
0.07. For the red curves, t� 0.05 and v� 0.03 or 0.07. Region 1 varies in approximate length from 10 for v� 0.03

to 5 for v� 0.07. The boundary between regions 2 and 3 varies between lengths 20 and 25.

4) For a helical peptide of length n, Eqn. 25 is often approximated by [�]calc�FH ¥ [�]H,n . The error implicit in
this approximation has recently been reported [25].



derived from a series of similar peptides, LR parameters w (and in some cases v) can be
varied to yield a best fit between [�]222,Exp and [�]222,Calc. When the CD contributions of
unstructured (U) states are included in the calculation, then Eqn. 26 yields [�]222,Calc.

5. Modeling of Experimental Protection Factors Using Lifson ±RoigAlgorithms. ±
Protection Factors (PFs) can be measured for 15N-labeled helical �-homopeptides of
virtually any length and can define site helicities. For this reason, PFs provide the most-
detailed and useful characterization of �-peptide helicity.

In D2O, the rate of NH�ND exchange is dramatically reduced for a completely H-
bonded conformation of a secondary amide [21]. The protection factor (PF) is defined
at a fixed pH as the ratio of rate constants for exchange of a solvent-exposed model
peptide NH relative to that of a partially helical NH of a candidate peptide. As
developed byEnglander and co-workers [22] and subsequently applied to the �-peptide
helicity problem by Baldwin [23] and Kallenbach and co-workers [24], a series of 15N-
labeled site isomers of a helical peptide allow assignment of PF values for each H-
bonded amide NH function of the peptide backbone. This uniquely-detailed, NMR-
based multiparameter signature of site helicities complements and greatly extends the
single-parameter calculation of CD-derived FH.

Derivation of an LR algorithm appropriate for PF modeling requires extension of
the design principles developed in the preceding sections, and helicity modeling with
these algorithms complements and adds incisive detail to the results shown in Figs. 2 ± 4.
The remainder of this section begins with algorithm construction, focusing initially on
an important relationship between two distinct but closely related measures of site
helicity. Finally, it presents results of LR modeling of these site helicity measures and
generalizes the interpretation of experimental PF values.

The simplest measure of site helicity is the fractional population of �-C-atoms at
site i that are part of helical conformations, �H��-Ci

. Averaging �H��-Ci
over all �-C-atoms

of anN- and C-capped helical �-peptide yields its FH. For the case of an �-pentapeptide,
Fig. 6,a, illustrates how the value of �H��-Ci

can be calculated from the LR state sum.
One selects from the state sum the helical weights that correspond to conformations for
which an i-site h conformation is part of a helical region. For example, at site i� 2,
reading down the column of identifiers, one finds that the appropriate conformations
are A, B, C, D, D�, and E. Adding their weights and dividing by the state sum yields �H��-C2

.
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Eqn. 27 relates PFi to a different type of helical site weight, �H�NHi
, which is defined

as the fractional population of NH protons of the residues that are intrahelically H-
bonded to a backbone amide O-atom belonging to the residue at site (i� 4). The three
intervening �-C-atoms at sites (i� 1), (i� 2), and (i� 3) must be �-helical for this H-
bond to form, as seen in Fig. 7 where the amide NH functions of the first three residues
of the sequence lack PFi values, although their �-C-atom must be helical for a PFi to be
defined at site 4. If the peptide is C-capped by a secondary amide, a PF(n�1) can, in
principle, be measured for its NH. An N- and C-capped helical �-peptide of length n,
thus, has n �H��-Ci

values and a total of (n� 2) normal PFi values including a C-terminal
PFn�1. A relationship between these is assigned at the close of this section.

The construction of a LR model for �H��-Ci
is straightforward. Since helical weights

must be selected from the state sum that correspond to conformations with helical
regions that contain residue i, the ith matrix of a normal LR algorithm must be tailored
to retain coefficients that assign w weights. From the 8� 8 matrix of Eqn. 20, the
coefficients (1,1)� (5,1)�w and (1,2)� (3,5)� (7,5)� tw are retained, but all other
coefficients are set equal to zero. Symbolizing this matrix as −mx× and the matrix of
Eqn. 20 as −m×, the value of �H��-Ci

is obtained from Eqn. 28, where v1� [0,0,0,0,0,0,1,1]
and v2� [0,1,0,1,0,1,0,1]. Onewweight assigned by mx would normally be reassigned as
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Fig. 6. a) Site helicity calculated as �H��-Ci
, the helicity at each �-C-atom for an �-pentapeptide. The seven helical

conformations are abbreviated by capital letters and identified by their sequence labels, with helical regions
shown in red. The � /� labels in the state weights specify for each �-site i whether a particular conformation
contributes to it. The contributions to site helicity at the first �-C-atom are found by reading down column 1 and
comprise conformations A, B, D, and D�, which corresponds to a site 1 weight of t2(w5�w4�w3(1� v)); this is
also the site 5 weight. For site 3, the contributing conformations are A, B, C, (D�D�), E, (F�F�), which
corresponds to a site 3 weight of t2(w5� 2w4�w3(3� 2v)). b) Site helicity calculated as �H�NHi

, the fractional
population of NH protons at residue i that are intrahelically H-bonded to the amide O-atom at site (i� 4). The
colored dots beneath sites 4, 5, and 6 symbolize the NH site of the H-bonds shown at the lower right of Fig. 6.
The subsequences hhhh and hhhc identify conformations that contain a H-bond donor NH at the underlined
site.Thus, site 4 (yellow dots) contains conformations A, B, (D�D�); site 5 (magenta dots) contains
conformations A, B, C, E; site 6 (green dots) contains conformations A, C, F�F�. Their respective site weights

are: NH(4) and (6): t2(w5�w4�w3(1� v)); NH(5): t2(w5� 2w4�w3).



v2 by the (5,2) coefficient of the (i� 1)th matrix termed −mxx×. To eliminate this anomaly,
mxx is defined as the matrix of Eqn. 20 with the (5,2) coefficient set equal to zero.

Since the values of �H�NHi
are defined by a helical conformation that extends over

five consecutive peptide residues, they cannot be modeled by LR triads or tetrads. To
ensure that the three residues that precede the ith residue are all helical, pentad
sequences derived from the peptide conformational label must be used, as can be seen
from inspection of the examples given in Fig. 6,b and Fig. 7. For a residue at site i, the
appropriate first four terms of pentad sequences are hhhh and hhhc, which must be
distinguished from chhh and chhc, which do not maintain helicity at site (i� 3). A 16�
16 matrix termed −nx× correlates the required pentads with row/column identifiers and
weights: hhhhh (1,1)�w, hhhhc (1,2)� tw, hhhch (2,3)� 1.0, hhhcc (2,4)� 1; all other
coefficients are set equal to zero. The ratio of matrix products required to calculate
�H�NHi

is given by Eqn. 29, in which the state sum ss can be calculated using 8� 8
matrices in the usual way. The 16� 16 matrix nx appears in the numerator of this
equation, which also uses a matrix termed −n×, that implements a normal LR algorithm;
it is constructed from the 8� 8 matrix by generalizing the transformation of Eqn. 12, as
shown in Eqn. 30.

LR-modeled site dependences for �H��-Ci
and �H�NHi

are compared in Fig. 8 for a
highly helical 19-residue �-homopeptide. Although �H��-Ci

is the conceptually more-
incisive parameter, �H�PFi

is easily calculated from experimental PFi values, measured by
well-defined and tested experimental protocols. Their large experimental ranges can
define �H�NHi

with precision; protocols for measuring �H��-Ci
are less precedented5).

��������� 	
����� ���� ± Vol. 85 (2002) 4411

Fig. 7. Schematic views of the �-helical H-bonding patterns of N- and C-capped deca- and pentapeptide
sequences. Each H-bond links atoms derived from five consecutive residues, but, owing to amide planarity, it
constrains only the three pairs of dihedral �/� angles for the central three residues. A shorthand notation for H-

bonds is illustrated at the lower right for the capped pentapeptide.

5) Correlation of 13C-NMR chemical shifts of �-C-atoms with residue helicity [26] suggests that, if site
dependences are relatively unimportant, these parameters may provide an experimental assay for �H��-Ci

.
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Fig. 8. Lifson�Roigmodeling of site helicities for a 19-residue peptide (v� t� 0.048). a) w� 1.3. b) w� 1.5. The
black curve corresponds to �H��-Ci

; the cyan curve corresponds to �H�NHi
values. As expected, the 19 �H��-Ci

values
are symmetrical about the peptide midpoint. For large w, as noted in the text, values of �H�NHi

at sites 4 ± 11
closely approximate the corresponding values of �H��-Ci

at sites 1 ± 8, and values of �H�NHi
at sites 12 ± 20

approximate �H��-Ci
at sites 11 ± 19.



As is evident from Fig. 8, for highly helical peptides, site-shifted values of �H�NHi
and

�H��-Ci
in the ascending and descending regions correlate closely. This correlation is

rationalized through examination of the conformational weights that contribute to
these two measures of site helicity. As shown above, Eqn. 29, which defines �H,NH at site
i of the peptide sequence, is proportional to the summed weights of the list of
conformations in the helical manifold that share h-site weights at the three sites (i� 1),
(i� 2), and (i� 3). All of these conformations must appear in each of the
corresponding lists that define �-C-atom site helicities at each of these sites. The list
that defines �H�NHi

is, in fact, the logical intersection of the three lists that define �H��-Ci
at

each of the sites (i� 1), (i� 2), and (i� 3), and, as a result, the list of weighting terms
that are summed in the numerator of Eqn. 29 to calculate �H,NH are a corresponding
logical intersection of the lists of weights for the �H��-Ci

values6).
As expected for a logical intersection, the �H�NHi

list contains fewer conformations
than any one of the associated three �H��-Ci

lists, but it closely resembles the shortest of
these. The missing conformations always contain unusually short helical regions. For
large w values, their contributions to the state sum are small relative to that of average
conformations, and, to a good approximation, the shortest of the �H��-Ci

list equals the
�H,NH list.

Inspection of the examples of Fig. 6 demonstrates that, for i-values spanning the
first half of the peptide sequence, each �H��-Ci

list that corresponds to a larger i
incorporates the conformations (or weights) of its predecessors; lists for central i-sites
contain the largest numbers of conformations. Accordingly, for i-values spanning the
second half of the peptide sequence, progressively more-complete �H��-Ci

lists appear
when the i-values are ranked in decreasing order. This pattern reflects the presence of
substantial numbers of long, stabilized helical conformations that contribute to all site-
helicities, except those close to the peptide termini. As a consequence, for i� n/2, �H�NHi

approximates �H,�-C(i�3) ; for i� n/2, �H�NHi
approximates �H,�-C(i�1) . This i-mapping

associates all but the two central values of �H��-Ci
with experimental PFi values. For

large n and w, the pair of missing �H��-Ci
that appear at the center of the sequence can be

assigned with small error as equal to values for their neighbors.
Inspection of the LR-modeled site helicities of Fig. 8 demonstrates the errors

associated with this approximation, which, with the exception of i� 1 or n, always
slightly underestimates �H��-Ci

. For a medium-sized peptide and w� 1.3, using �H�NHi
for

the central values of �H��-Ci
is seen to underestimate them by ca. 10%, but for the

peptide with w� 1.5, the error is clearly much smaller.
The most important experimental consequence of the modeling carried out in this

section is the demonstration, evident from Fig. 8, that calculation of �H�NHi
from

experimentally assigned values of PFi provides an exceptionally powerful test of the
degree of homogeneity of the conformational manifolds formed by �-peptide helices.
The curvature seen in site dependent plots of �H�NHi

directly reflects the presence of
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6) The pentapeptide of Fig. 6 illustrates these assignments. The selections of h,c labels for assigning �H��-Ci

conformation lists can be read from the � /� selection lists of Fig. 6,a. For the first three sites, these are
l(1)� [A, B, D, D�]; l(2)� [A, B, C, D, D�]; l(3)� [A, B, C, D, D�, F, F�]. Their logical intersection 1(1)	
1(2)	 1(3), which equals l(1), defines the conformational list for �H�NHi

at site 4, as confirmed by reading
down the � /� selection lists of Fig. 6,b. As noted in the legend for Fig. 6, for this pair of cases, �H��-Ci

�
�H�NHC4

�



partially helical conformations within the helical manifold. A manifold that is
dominated by the completely helical conformation together with a few conformations
with helical regions of nearly equal length yields site-dependent plots of �H�NHi

with a
large central region in which �H�NHi

is nearly site-independent and approaches the
limiting value of 1.0. The changes evident in Fig. 8 that result when w is increased from
1.3 to 1.5 identify the range of w values required to approach this ideal form.

The next section addresses the effect of helix-stabilizing caps on the conformational
homogeneity of a homopeptide characterized by w values in this range. The two
independent factors of effective capping and consistently high helical propensities for
the amino acid residues that make up an �-peptide sequence are jointly required to
generate �-peptide helices that approach the stability and conformational homogeneity
of helices formed by �-peptides.

6. Helix Stabilization by N- and C-caps. ± This section describes results of LR
modeling of helical manifolds formed by �-peptides that bear helix-stabilizing caps at
each terminus. The helicities of peptides of moderate length are strongly enhanced by
certain N- and C-capping functions. Citing evidence from the X-ray crystallographic
data base for globular proteins, Presta and Rose noted sequence regularities within the
nonhelical end regions of protein helices and proposed that helix start and stop signals
rather than helical propensities may largely define the regions of helical structures
within proteins [27]. Prior to this report and drawing upon proposals that aligned
backbone amides create substantial local dipoles at the helix termini that are stabilized
by neighboring charges [28], it was demonstrated that �-peptide helicity is enhanced
when positive charges are placed near the peptide C-terminus or negative charges at
the N-terminus [29]. However, charge is not an essential feature of a stabilizing cap
[30]. Appropriately structured, uncharged �-peptide N-caps can give rise to helix
stabilization comparable to that seen for negative charges; examples include the simple
acetyl (Ac) function and the amino acid Gly, as well as amino acids bearing polar side
chains, such as Asn, Ser, and Thr7). This report is primarily focused on changes of
helicity that may result if appropriate amide-forming functions (helical templates) are
linked at the ends of simple �-peptide sequences that alone are already substantially
helical.

Along with peptide sequences of appropriate amino acid composition, caps of
proven helix- enhancing efficacy are part of a tool kit for the molecular design of highly
structured peptide sequences. It is unclear whether the upper limits of cap efficiency
have been realized, in part because the range of mechanisms of cap stabilization are
incompletely defined. It is also unclear whether the effectiveness of a cap is strongly
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7) Ser, Thr, and Asn are also strong helix breakers when located within peptide sequences, and this effect has
been attributed to intramolecular H-bonding between side-chain functions and backbone amides, which
interferes with helix propagation. Depending on where they appear within a peptide sequence, these
amino acids, thus, can either strongly stabilize or destabilize particular helical conformations within a
manifold, and a first exploration of this point has recently been reported [31]. Baldwin and co-workers
have proposed that two experimentally defined N- and C-capping parameters should be added to the
helical propensity for each type of amino acid when applying LR modeling to heteropeptide sequences,
and that existing data sets are sufficient to assign these 60 parameters [32]. An acute discussion of this
proposal lies outside the scope of this report.



dependent on the local �-amino acid sequence at its attachment site. For selected cases,
the large helix-enhancing effect of stabilizing caps is unequivocal. In H2O, a solubilized,
isolated (Ala)12 sequence exhibits no helical CD features, but the same peptide, when
appropriately capped, becomes exceptionally helical [33].

What is currently known about the mechanisms of helix stabilization by terminal
caps? Abundant evidence confirms the effect of complementary charges that can
stabilize terminal helix dipoles that are probably best attributed to the peripherial
three-oriented amide residues that lack intrahelical H-bonds [34]. The mechanisms of
helix stabilization by uncharged caps are less clear. Helix stabilization by N-terminal
amino acids like Ser, Thr, and Asn may reflect formation of intramolecular H-bonds
between polar side chains of these amino acids and one or more of the three amide NH
functions that appear at this terminus. X-Ray structural evidence drawn from the
protein data base has documented the formation of side-chain-to-backbone amide H-
bonds by the above amino acid series [35].

Of the simple helix-stabilizing N-caps, acetyl and formyl rank among the best [36].
Why should such simple caps be strong helix stabilizers? The most plausible
explanation appears to be a significant superiority in H-bond acceptor capacity of
the O-atom of an acetamide relative to that of the corresponding O-atom of an �-
aminoacyl amide, which may be attenuated by a competing and strongly stabilizing
electrostatic interaction with its NH function. The strongest of the existing helix-
stabilizing N-caps present both an oriented charge and a preorganized array of H-
bonding acceptors that match the orientation of the NHH-bond donor sites that appear
at the N-terminus of an �-helix [36].

A LR algorithm that has been tailored to model the effect of N- and C-caps on the
helical stability of an �-peptide must introduce quantitative capping parameters p and c
that are defined relative to a model, such as the same peptide that bears simple Ala
residues at its N- and C-termini. The first such algorithm was introduced by Doig et al.
and was based on a 4� 4 matrix product [37]. In addition to applying the p-parameter
to conformations with helical regions that extend to the peptide N-terminus, and the c-
parameter to conformations with helical regions that extend to the C-terminus, this
algorithm also includes p-weighted conformations like hhccc and hcchhhccc and
c-weighted conformations like cchh and chhhhhcch. Solitary and paired h-sites at the
N- or C-termini were also given capping weights. Mechanisms that justify this weighting
are implausible, and subsequent publications have introduced algorithms that confine
cap weighting to conformations with helical regions reaching either or both of the
peptide termini [10].

The 8� 8 matrix product of Eqn. 20 is easily modified to accommodate capping
weights that meet this restriction. The final w weights of all helical sequences that
extend to the C-terminus are assigned by the (1,2) coefficient of the last matrix. All C-
capping weights are, thus, correctly assigned if the value of the (1,2) coefficient of the
final matrix in the product series is changed from wt to wtc, since only conformations
with helical regions that extend to the peptide C-terminus are weighted by this
coefficient of this matrix. Analogously, the p-weight for any conformations with helical
regions extending to the peptide N-terminus is assigned by changing the value of the v1
vector at column 7 from 1 to p. In the absence of other changes in the matrix product,
peptide conformations with labels that begin with sequences hc or hhc are incorrectly

��������� 	
����� ���� ± Vol. 85 (2002) 4415



assigned p weights. The correct weights are assigned to these conformations only if the
value of the coefficient (7,6) in the first matrix in the product series is changed from v to
v/p, and the value of the coefficient (5,2) in the second matrix in the series from v2/w to
v2/(wp). Eqn. 31 shows the corresponding algorithm, and Eqn. 32 gives the state sum
calculated for anN- andC-capped �-pentapeptide using this matrix product. Inspection
shows that all conformations with helical sequences that extend to either or both of the
caps are correctly assigned p- and c-weights, and these weights appear in no other state
sum terms.

In this state sum, both p- and c-weights are assigned to only one term, which
corresponds to the completely helical conformation. This conformation is uniquely
stabilized by both caps. Provided p and c are both large, such a double pc weighting
provides the most effective mechanism for increasing the homogeneity of the
conformational manifold formed by an �-peptide. The difference between cap-
stabilized and simple helical �-peptides is best demonstrated by comparing Fig. 4 with
Fig. 9. For varying w in a 19-residue �-homopeptide, both graphs plot the modeled
relative contributions to the FH by helical conformations of different length. For the
uncapped examples of Fig. 4, the forms of the length distributions change dramatically
as w is increased, but even for the largest value of w, no conformational length
contributes more than 25% to the overall FH. All length distributions are broad, even

Fig. 9. Lifson�Roig modeling of the relative contributions of long and short helical conformations to the helical
manifold for a 19-residue peptide (v� t� 0.048) capped by N- and C-functions for which p� c� 10, equivalent to
the stabilizing effect of anN-acetyl function. The ordinate is the fraction of total FH that is contributed by helical
conformations of lengths 3 ± 19. With the exception of the strongly-destabilized peptide with w� 0.9, the
introduction of caps dramatically increases the relative and absolute abundances of the completely helical

conformations. These distributions should be compared with the corresponding examples of Fig. 4.
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for very large values of w, reflecting a persistence of substantial length diversity within
helical manifolds.

Very different length distributions are seen for the analogous capped examples of
Fig. 9. For stabilized helices (w� 1.0), the fully helical conformation is the most
abundant, contributing more than 50% to the FH for w� 1.3. All curves in Fig. 9
display a similar shape, and the changes induced by an increase in w are primarily
quantitative, not qualitative. For allw, the conformational homogeneity of these capped
peptides has increased substantially from that of the uncapped peptides, and, for high
w-values, the properties of the helical manifold can be approximated for many purposes
by a single, completely helical conformation.

An alternative demonstration of the effect of strong helix-stabilizing caps on the
structure of the helical manifold formed by an �-peptide is provided by the site
helicities shown in Fig. 10, which include the results for the corresponding simple
helical peptide shown in Fig. 8,a. For the 19-residue peptide and w� 1.3, addition of
caps increases FH from 0.50 to 0.84. The maximal site helicity at the central residue is
raised by 35%, and terminal site helicities are increased more than fourfold. The forms
of the plot show striking differences that reflect the increased conformational
homogeneity of the capped peptide. Its site helicities in the central region of the plot
are nearly constant, implying that only relatively long helical sequences contribute to
its manifold.

If w for the capped peptide is increased to 1.5, the overall FH increases to 0.93, and
the site helicities lie above 0.9 in the region between sites 3 and 17, suggesting that
addition of efficient helix-stabilizing N- and C-terminal caps to a highly helical
�-peptide of medium length (comprised of helix-stabilizing residues with w values
greater than 1.3) ensures its conformational homogeneity. To an excellent approx-
imation, the conformational manifold of such a peptide can be replaced by a single,
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Fig. 10. Lifson�Roig modeling of site helicities for a 19-residue peptide (v� t� 0.048, w� 1.3) with (black
curve) and without (cyan curve) N- and C-capping residues for which p� c� 10. By criteria of high central site
helicity and central curve flatness, the addition of caps substantially reduces the conformational inhomogeneity

of the helical manifold.



completely helical conformation. If the LR modeling assumptions are valid, �- and �-
peptides should exhibit similar conformational integrity.

Although the capping values p and c of Figs. 9 and 10 were chosen to generate
dramatic graphs, they are not exceptional. Values approaching p� 10, the value used in
this modeling exercise, have been assigned from experimental CD changes seen for Ac
functions and simple, negatively charged and uncharged N-caps that provide a single H-
bonding site proximate to the helix N-terminus. More complex N-caps that provide
multiple, rigidly oriented H-bonding sites can lead to substantially more-efficient helix
stabilization, with p-values that lie in the range of 30 ± 100 [36]. Smaller effects have
been demonstrated for C-caps, and almost all reported significant c-parameters result
from C-terminal placement of positive charges [37] [38], which usually gives rise to c-
values in the range of 2 ± 10. C-terminal helix-stabilizing caps that provide more than
one optimally orientedH-bond donor are likely to increase c, but owing to the structural
differences between the oriented amide functions at N- and C-termini, the design and
synthesis of such templates pose challenging problems. They have yet to be realized.

Apart from insights they may offer concerning the energetics and intrinsic features
of helix formation, maximally efficient caps are likely to find important practical
applications. Selective stabilization of the completely helical peptide conformation
depends on the availability of widely applicable N- and C-caps that exert large and
nearly equal helix stabilizing effects on the linked peptide sequence. Developing such
scaffolds is an important research goal.

7. Scope and Limitations of Lifson�Roig Algorithms: Alanine �-Homopeptides. ±
The Lifson�Roig [2], Zimm�Bragg [39], and related algorithms [40] were developed
more than 40 years ago to model helix/coil equilibria of charged �-oligopeptides 20 to
several hundred amino acids long. Recently, they have been nearly universally
employed to model helicities of �-homo- and heteropeptides of lengths in the range of
10 ± 50 residues. These algorithms are imperfect bookkeeping tools for the study of
most �-heteropeptides. Unless LR algorithms are modified to include specific,
independently quantified, context-dependent effects, they are −sequence blind×, and
this is an intrinsic limitation of the matrix product used to construct them. Moreover,
they incorporate a model for the �-peptide unstructured state that is almost certainly
inappropriate for oligomers constructed from amino acids that bear charged as well as
hydrophobic side chains [3] [6]. Relevant to this point, a recent study has critically
explored the scope and accuracy of the Flory hypothesis that underlies LR models for
the unstructured state [41]. It is likely that a diverse class of algorithms for modeling
and predicting �-peptide helicity from amino acid composition and sequence will be
required to optimally address their heteropeptide applications, but there is one role for
which tailored LR algorithms are almost certainly ideally suited. For polyalanines, a
recent comparison of LR and similar models with a more-rigorous all-atom molecular-
modeling simulation showed that, although quantitative differences were noted,
fundamental helicity properties were in qualitative agreement [42]. Despite much
effort, a rigorous understanding at a molecular level of the factors that govern �-peptide
helicity is still lacking. Key missing elements of that understanding must be developed
by focusing the full range of quantitative tools on the simplest and most versatile of the
available helical �-peptide substrates. These are the spaced, solubilized polyalanines.
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After briefly addressing the underlying important issues and the potential scope of
polyalanine studies, this section closes by suggesting alternatives to the LR formalism
that might better address the requirements of helicity modeling for �-heteropeptides.

Structurally, alanine is the simplest of the strongly helix-stabilizing proteinogenic �-
amino acids, and �-polyalanines are the simplest hosts for exploring the helicity
changes that result from the introduction of guest amino acids into their sequences [25].
LR Modeling of such changes is expected to permit assignment of helical propensities
as well as context- and site-dependent effects on helicity that result from single or
multiple guest substitutions. A preliminary to rigorous modeling of this type requires
full characterization of the factors that define helicity for the �-polyalanine hosts. New
findings imply that major aspects of that characterization are incomplete.

From studies of the properties of N-capped short �-polyalanine sequences and a
large length series of spaced solubilized polyalanines, Kemp and co-workers have
recently questioned the implicit LR assumption that the stability of an �-helical region
is a linear function of its length [17] [25]. Small values of w were required to model
short helical conformations, and positive H-bonding cooperativity [43] that selectively
stabilizes longer helical conformations was suggested as an explanation. Measurements
of PF values for selected members of the spaced, solubilized �-polyalanine series have
been initiated and provide independent support for the hypothesis of a significant
increase of the value of w with the length of a helical region [44]. If this assumption can
be quantitatively confirmed for �-polyalanines and validated as significant in
magnitude for more general �-peptide sequences, this effect is expected to redefine
our heuristic models for �-peptide helicity.

The interpretational complexities introduced by a hypothesis of a significant length
dependence for helical propensities underlines the need to model helicity, at least
initially, through studies of simple �-homopeptides that lack charged side chains. The
existing LR models have the versatility to provide bookkeeping tools for these studies.
As noted elsewhere [17] [25], software for manipulation of symbolically-expressed
polynomials allows each wi-weighted term of a LR state sum, e.g., that of Eqn. 32, to be
replaced by terms that correspond to new length-dependent helical weights. In effect,
the conventional LR state sum plays the role of a computational template that can be
modified to yield more versatile expressions.

The complementarity between deficiencies of LR algorithms and compensating
features of helical �-polyalanines deserves brief comment. The sequence-blind feature
of LR algorithms is irrelevant, and the conformational manifold of these homopeptides
has the simplifying feature that the properties of conformations with helical regions of a
particular length are almost certainly similar8). Since the unstructured states of �-
polyalanines lack the unpredictable hydrophobic interactions expected for many
heteropeptides, their stabilities can probably be approximated satisfactorily by the v
polynomial within a LR state sum.

The relative simplicity of the �-polyalanines also provides, at least potentially, an
experimental approach for assigning helicity properties to individual conformations
within a complex helical manifold. When a homopeptide sequence of length n is
extended by one residue, close analogs of all conformations present in its manifold are
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8) The N- and C-terminal sequence sites may be exceptions, as noted in recent reports [45].



retained, and (n� 1) new conformers are added to generate a new manifold. Only one
of these, that of length (n� 1), lacks a representative in the manifold for the n-peptide.
The presence of a strongly stabilizing N- or C-cap singles out and stabilizes a small
subset of conformations within each manifold. In principle, the length-dependent
properties of the individual conformers are assignable from length-dependent changes
in the experimental properties of the manifold itself. Kemp and co-workers have
recently applied this recursion tactic to assign length-dependent w-values for Ala
residues in certain N-capped �-polyalanines containing 3 ± 14 residues [17]. The full
potential of the recursion tactic would be realized if the helicity properties ofN- and C-
capped �-peptides that approach conformational homogeneity could be used as indepen-
dent calibrations of the properties assigned by recursion to their simple helical analogs
that lack strong cap stabilization. An essential first step is a demonstration that helicities
of cap-stabilized peptides result from independent contributions of cap and peptide.

One key example illustrates the potential of these studies. Currently, the reliability
of calculations of FH from CD ellipticities is in doubt [15], owing to a lack of rigorous
calibration standards. Measurement of ellipticities for the members of a N- and C-cap-
stabilized homologous series of helical polyalanines may provide that calibration. A
linear regression of [�]H222,nmolar versus polyalanine length n according to Eqn. 24 will
yield the key parameters X and [�]H222,� of Eqn. 23. These are the missing parameters
for rigorous LR calculations of [�]222,Calc9). Extension of these results to other �-homo-
and heteropeptides will allow experimental assessment of the errors implicit in the
fundamental assumption of all CD-based FH calculations, assuming that the calibration
constants [�]H222,n reflect only the backbone conformation of an �-peptide and are
insensitive to its amino acid composition.

One can envisage alternative bookkeeping tools that lack the sequence-blind
features of the LR algorithm and that are computationally more efficient when applied
to modeling of helicities of heteropeptides by employing external and internal capping
corrections, amino acid dependent helical propensities, and context dependencies. For
�-peptides in the commonly encountered length range, the helical portion of the state
sum can be modeled explicitly, without recourse to a matrix-based algorithm.
Attractive features of alternatives to LR computational models would be a retention
of the amino acid sequence in a computationally useful form, and a computational
search capacity that could identify unexpected sequence-dependent context effects
within an extensive data base comprised of helical sequences and their experimental
helicity parameters. Replacing the v polynomials, which model the unstructured states
of �-peptides within LR state sums, with more suitable approximations awaits energetic
characterization, through experiment or theory, of the sequence- and amino acid
dependent hydrophobic interactions that are believed to stabilize and reduce the
conformational complexity of these states. Until such characterization is in hand, the
existence of these stabilizing effects introduces an uncertainty into any algorithmic
calculation of the helicity of heteropeptide sequences.

8. Conclusions. ± Unlike helical �-peptides, helical �-peptides are conformationally
inhomogeneous. A fully helical conformation formed by an �-peptide in H2O is in rapid
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9) Alternatively, it may invalidate Eqns. 18 and 19, requiring use of an empirically-derived set of calibration.



equilibrium with comparable −concentrations× of partially helical conformers that,
collectively, form a helical manifold. Conformational analysis of this complex system
has primarily relied on Lifson�Roig (LR) state sums based on a series of model
assumptions.

Conventional LR algorithms have been analyzed and modified in this report, then
used to generate quantitative models for the properties expected for the conforma-
tional manifolds formed by helical �-peptides. The relative contributions of long and
short helical conformers to the overall fractional helicity (FH) of an �-homopeptide
are easily modeled as functions of the overall peptide length n and the helical
propensity w of its amino acid residues. The site dependence of site helicities, which are
directly related to experimental values of 1H-NMR-derived protection factors (PF),
provides an independent measure of the degree of conformational homogeneity within
a helical manifold. In striking contrast to the conformationally homogeneous helices
formed even by short �-peptides, as modeled by conventional LR algorithms, the
helices formed by �-peptides approach conformational homogeneity only if the
peptides are long, if all amino acids possess unusually high helical propensities, and/or if
N- and C-capped by strongly helix-stabilizing functions.

A key LR model assumption is a linear length dependence of the stabilities of �-
peptide helices. A recent report [17] frames the hypothesis that this assumption is
incorrect: helical stabilities seem to be characterized by a nonlinear, large length
dependence, with the implication that the conformational homogeneity of peptides
containing more than 20 residues is grossly underestimated by conventional LRmodels.
Under this hypothesis, shorter peptides retain the strong conformational inhomoge-
neity implied by these models.

A possible explanation for the striking differences exhibited by short helical �- and
�-peptides is a relative reduction in the H-bonding capacity of the amide functions of �-
peptides attributable to the strong electrostatic stabilization of these functions arising
within �-peptide coiled-state conformations that allow opposing and proximate NH
and CO dipoles of each peptide residue to interact. Such a stabilization in �-peptides
should reduce the magnitudes of both helical propensities andN- and C-capping effects
attributable to terminal �-amino acid functions.

Experimental Part

All modeling calculations were executed in Mathematica 3.0, Wolfram Research, Inc. Symbolic expression
polynomials were rendered in easily interpretable form by use of the Mathematica Expand function, which was
applied to calculated symbolic state sums to generate expressions similar to those of Eqns. 21 and 32. When
applied to a polynomial, theMathematica function coefficient [p,x,i] yields the coefficient for the term xi within
the polynomial, and the product xi ¥ coefficient [p,x,i] extracts the entire xi from the polynomial. As a result, for a
helical �-peptide, the mole fraction of conformations with helical regions of length i is given by 1/(n ¥ ss) ¥ i ¥ xi ¥
coefficient [ss,x,i]. Applications and extensions of this example allow generation of the modeling data cited in
this report.

The following stepwise protocol was followed to tailor LR algorithms. The starting point is a set of full list of
conformational labels for peptides of appropriate lengths. Each h,c conformational label in each list is then
associated with a desired weighting scheme. (This weighting scheme may introduce general features into the
algorithm, such as the distinction between t- and v-weights or the introduction of N- and C-terminal capping
parameters. It also might introduce special weighting features that apply to a particular residue k in the peptide
amino acid sequence. In this case, the weighting change must be applied only to the k-matrix and perhaps to its
neighbors). Usually this list is constructed by making slight modifications in a standard LR weighting scheme.
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Partial sequences, triads, tetrads, etc., are then selected that allow the weighting distinctions to be made. The
length of these partial sequences determines the minimal size of the LR matrices used in the algorithm. Thus, if
tetrads are needed, then the 8� 8 matrix algorithm is appropriate. Selected pairs of coefficients in the matrix are
identified that implement the desired weighting, and a new algorithm is constructed. This algorithm is then
tested for its capacity to apply the desired weights to each of the conformational labels for an appropriate range
of peptides of lengths n. The process of associating state-sum terms with conformational labels is greatly
facilitated by the use of matrices expressed in the w, v, t formalism of Eqn. 20.
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